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Abstract
The insulating Mott state is formed due to repulsive electron–electron Coulomb
interaction in the presence of the lattice (or in other words, due to electron–
electron Umklapp processes). The second moment conductivity sum rule is
derived, and it allows us to evaluate the strength of Umklapp scattering and
the static electron–lattice energy. Mid-infrared spectra of current–current and
density–density correlation functions in cuprates are suggested as evidence of
strong Umklapp scattering.

PACS number: 74.72.−h

1. Introduction

High-temperature superconductivity in cuprates appears in the proximity of the insulating
Mott state. Strong electron–electron (el–el) correlations, present in the Mott state, remain
upon doping away from half-filling and, these correlations are revealed by anomalous normal
state and pseudogap state properties. Since Mott–Hubbard insulator (distinct from Wigner
insulator) is formed due to el–el Umklapp scattering, Umklapp processes are, presumably,
relevant for the understanding of normal state phases as well as superconductivity. Umklapp
scattering is principally different from other types of el–el scattering, because it breaks the
conservation law of momentum and may lead to new liquid states distinct from Landau–Fermi
liquid [1].

Interactions in many-body systems lead to various phases, distinguished by broken
symmetries and order parameters. Conventionally, the presence of periodic lattice potential
is accounted for by the Bloch theory (for non-interacting particles). But the Bloch band
theory can fail in the presence of strong interactions1, and not only new phases with broken
1 Mott–Hubbard insulator is conventionally considered in the framework of Hubbard model on a lattice, and for this
reason Hubbard model necessarily, although implicitly, includes periodic lattice potential. Therefore, a consistent
treatment of correlated electron gas in proximity of Mott state has to include static electron–lattice coupling (last
term of Hamiltonian (equation (1)). In the language of reduced Bloch band scheme, el–el scattering between Bloch
states can be distinguished as momentum-conserving and momentum-non-conserving (Umklapp). In this language,
Umklapp el–el scattering due to the presence of static electron–lattice potential causes the formation of Mott–Hubbard
state (the commensuration—one electron per unit cell—leads to the increase of the effective strength of el–el Umklapp
processes).
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symmetries (e.g., antiferromagnetic Mott insulator) but also new electron liquids (distinct in
their phenomenology from Landau–Fermi liquid) may form. Namely, the ground state and
excitations of many-body electron system (at strong coupling) may be different in the presence
of the lattice (not protected by momentum conservation law) and without the lattice (leading to
Landau–Fermi liquid). Therefore, it is important to have direct unambiguous measurements of
the strength of Umklapp scattering for a many-body interacting system. In this paper, I show
that the strength of Umklapp scattering can be evaluated from the second moment conductivity
sum rule. The electromagnetic spectra of cuprates are discussed demonstrating the relevance
of Umklapp scattering in the doping range where superconductivity exists. Coulomb energy
(short- and long-range parts) of an inhomogeneous electron system depends on the lattice
potential [2] especially in the proximity of Mott state, and therefore the understanding of
Umklapp scattering is relevant for many theories of cuprates. Strong Umklapp scattering
is particularly relevant in the context of ‘mid-infrared scenario’ [3, 4], which suggests a
possibility of saving the long-range part of Coulomb energy at the superconducting transition.

The system of interest is the many-body system of electrons in the periodic lattice potential.
If the dynamic lattice effects (e.g., phonons) are neglected (by assumption), the Hamiltonian
can be written as follows:

Ĥ =
∑

p

p2

2m
c+
pcp +

1

2

∑
q �=0

Vqρ̂q ρ̂−q +
∑

κ

U−κ ρ̂κ (1)

where ρ̂q = ∑
k c+

k−qck is the density operator. The first and second terms are kinetic and
Coulomb interaction energy of electrons. The third term describes the periodic potential of
the lattice on the electrons which can be represented by the Umklapp pseudopotential U−κ

with the sum over wavevectors of the reciprocal lattice κ = l2π/a, where l = {±1,±2, . . .}.
Various factors (the symmetry and profiles of electron–ion potential and relevant electronic
valence orbitals, etc) are encrypted in the periodic pseudopotential. The interaction term
with positive homogeneous background (q = 0) is omitted. The Coulomb energy and static
electron–lattice (el–lat) energies are by definition

〈Vc〉 ≡ 1

2�

∑
q

Vq[〈ρ̂q ρ̂−q〉 − N ] (2)

Eel–lat =
∑

κ

Uκ〈ρ−κ〉. (3)

Coulomb energy in the small-q limit (q � qT F ) for Hamiltonian (1) was analyzed in the
publication [2]. It was shown that Umklapp processes are important (especially for two-
dimensional Coulomb systems) in determining density–density correlation function. Sum
rule for current–current correlation function, derived in this paper, can directly give valuable
information about the static el–lat energy. This sum rule allows analysis of changes of static
el–lat energy in the superconducting (or any other) transition.

2. Sum rule derivation

The standard way to derive various sum rules is to calculate commutators of an appropriate
operator with the Hamiltonian. The first moment of the current–current correlation function
is given by the expectation value of the following commutators:

2

π

∫ +∞

0
dω ω Im �(q, ω) = 〈[[jq,H ], j−q ]〉. (4)
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The current–current correlation function is defined in the standard way:

�(q, ω) ≡ i

h̄

∫ +∞

0
dt ei(ω+iδ)t 〈[ĵ (q, t), ĵ+(q, 0)]〉 (5)

where the current is jq = e
2m

∑
p(2 �p− �q)c+

p−qcp. This current can be split into the longitudinal
and transverse components with respect to the direction of the perturbation �q:

j ‖
q = e

2m

∑
p

(
2 �p �q
q2

− 1

)
�qc+

p−qcp j⊥
q = e

2m

∑
p

(
2 �p − 2 �p �q

q2
�q
)

c+
p−qcp. (6)

Using standard relations between the conductivity and the current–current correlation function
(e.g., [5])

ω2

4π
Im εL,T (q, ω) = Im �L,T (q, ω) = ω Re σL,T (ω) (7)

the sum rule can be written equivalently

2

π

∫ +∞

0
dω ω3 Im ε(q, ω) = 8

∫ +∞

0
dω ω2 σ(q, ω) = 〈[[jq,H ], j−q ]〉. (8)

The explicit calculation gives the following results for the sum rules of the longitudinal
current correlations

[[
j ‖
q , Ĥ

]
, j

‖
−q

] = e2

(2m)3

[
2q4N̂ + 24

∑
p

( �p �q)2c+
pcp

]
+

( e

2m

)2 ∑
t

2(�t �q)Vt [(2�t �q)ρt+qρ−(t+q)

− (2�t �q + 2q2)ρ−t ρt ] − 4
( e

2m

)2 ∑
κ

(�κ �̂q)[(�κ �̂q) − q2]Uκρ−κ (9)

and of the transverse current correlations[[
j⊥
q , Ĥ

]
, j⊥

−q

] = e2

(2m)3
4
∑

p

[p2q2 − ( �p �q)2]c+
pcp +

( e

2m

)2
4
∑

t

(t2 − (�t �̂q)2)Vt [ρt+qρ−(t+q)

− ρtρ−t ] −
( e

2m

)2
4
∑

κ

(κ2 − (�κ �̂q)2)Uκρ−κ (10)

where �̂q = �q
q

is a unit vector along the direction of �q, and N̂ = ∑
p c+

pcp is the number
operator. In the long wavelength limit (q → 0), the sum rules can be written in a simple form∫ +∞

0
dω ω2 σT (ω) � e2

8m2

∑
κ

(κ2 − (�κ �̂q)2)(−1)〈Uκρ−κ〉 (11)

∫ +∞

0
dω ω2 σL(ω) � e2

8m2

∑
κ

(�κ �̂q)2(−1)〈Uκρ−κ〉 +

[
4π e2n2

m2

]
(12)

and define Â ≡ ∑
κ(�κ �̂q)2(−1)U−κ ρ̂κ . The sum rule for the transverse conductivity

(equation (11)) is determined by Bragg scattering from the periodic potential such that �κ ⊥ �q.
The sum rule for the longitudinal conductivity (equation (12)) is given by two terms: one due
to Bragg scattering from the lattice distortion with �κ‖�q, and another one, due to the long-
range part of el–el Coulomb interaction (only in three-dimensional case). This last term of
equation (12) can be omitted under many circumstances if sum rule is written for local
longitudinal conductivity. The conductivity defined in equation (7) is nonlocal, and difficulties
associated with such a conventional definition were discussed in detail [6]. Under many
circumstances [6] the long-range part of Coulomb potential can be considered self-consistently,
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so that only the short-range part of Coulomb potential is included into effective Hamiltonian
for calculation of local conductivity. In the absence of long-range order current fluctuations
have finite correlation length, and therefore local transverse and longitudinal conductivities
has to be equal in the limit q → 0. Consequently, the right-hand sides of equations (11) and
(12) have to be equal (for square(or cubic) lattice).

Sum rules (equations (11) and (12)) can be used to determine (e.g., from optical
reflectivity experiments) the expectation value of 〈Â〉 and closely related Eel–lat (or rather
changes thereof upon phase transition). The analysis of these sum rules would allow us to
measure the changes of static el–lat energy (usually included into ‘effective kinetic energy’, see
discussion below). In the Mott state, conductivity σT (ω) is suppressed up to high frequencies
(of interband transitions, charge-transfer transitions, etc). Since most of the spectral weight of
σT (ω) is transferred to high frequencies, the right-hand side of equation (11) increases. This
is consistent with the decrease of Eel–lat (increase of 〈Â〉) in the Mott state.

The continuity equation �q �jq,ω = −ωρq,ω, due to the charge conservation, allows us to
relate the longitudinal current–current correlation function and the density–density correlation
function

q2 Im �j ‖,j ‖(q, ω) = ω2 Im χρ,ρ(q, ω). (13)

Thus one way to derive the f -sum rule for the longitudinal conductivity is to use the first
moment sum rule for the density–density correlation function. Since [5]

2

π

∫ +∞

0
ω Im χρ,ρ(q, ω) dω = ne2q2

m
(14)

then the f -sum rule for the longitudinal conductivity follows:

2

π

∫ +∞

0
dω

Im �j ‖,j ‖(q, ω)

ω
= 2

π

∫ +∞

0
dω σL(ω) = n e2

m
. (15)

One can also check directly the equivalence between the third moment sum rule for the density–
density correlation function (given in [2]) and the first moment sum rule for the longitudinal
current–current correlation function (equation (9)).

For q = 0 limit, the sum rule (equation (11)) was derived by Hopfield [7]. Namely, in
real space the sum rule can be written

2

π

∫ +∞

0
dω ω3 Im ε(q, ω) = − ω2

0 e

3mn

∑
b

∫
all space

d3rδρ(r)∇2Vb(r) (16)

where the sum is over different atoms in the unit cell (numbered by b). Thus, in real space the
sum rule (equation (11)) is given by the integral of the product of the Laplacian of the crystal
potential Vb(r) and the distortion of the electron density δρ(r).

3. Discussion

In the recent literature, the extensive use of the tight-binding model expression for the kinetic
energy was used unlike as defined in the Hamiltonian (equation (1)). Such an approach has
several obvious limitations: (a) the tight-binding kinetic energy is only ‘effective’ kinetic
energy, which is the arbitrary sum of the kinetic and partial electron–lattice energy, (b) the
upper cutoff on the bandwidth of the tight-binding band is ambiguous (especially because
this cutoff cannot be determined unambiguously in strongly correlated materials), (c) finally,
the ‘truncated’ f -sum rule (equation (15)) is not constant, but rather the ‘effective’ kinetic
energy (the validity is limited to only the closest-neighbour hopping (for instance, neglecting



Umklapp scattering in cuprates 9403

the next-nearest neighbour hopping)). The Hamiltonian used in this paper has much wider
applicability than the tight-binding model (perhaps, the only not well-controlled assumption
is the assumption of the ‘pseudopotential’, representing the ‘effective’ periodic potential from
ions and core electrons).

Electron-energy loss spectroscopy (EELS) [8] and optical reflectometry (OR) [9] provide
direct evidence that the Umklapp scattering is very strong in cuprates (in wide doping range
including superconductivity). Indeed, the peak for the loss function Im

[ −1
ε(q,ω)

]
(for more

detailed discussion of density–density correlation function of Hamiltonian (1), see [2]) is
so wide that it can barely be associated with narrow plasmon peak as observed in simple
metals. Another widely known fact from optical reflectivity measurements [9] is that the
optical conductivity σab(ω), in addition to the Drude contribution at low frequencies, contains
a so-called ‘mid-infrared band’ stretching from 0.2 eV to 2 eV. This can be contrasted
with the situation for simple metals, where at high frequencies the conductivity is small
and given by the tail of the Drude peak. The vanishing conductivity σ(ω ∼ ωp) at
the plasma frequency implies the narrowness of the plasma peak for the loss function
Im(−1/ε(q = 0, ω)) = Im(−1/(1 + 4iπσ(ω)/ω)). Correspondingly, for cuprates the mid-
infrared contribution to the conductivity Re σ(ω) ∼ ω Im ε(ω) and the wide plasmon peak for
Im(−1/ε(q = 0, ω)) are closely related facts (both due to Umklapp scattering).

The origin of the mid-infrared band can be understood from the following relation, derived
by Hopfield [10],

Re σt (ω) ∼ 1

4πm2ω3

∑
κ

U 2
κ κ2κ2

µ Im

[
− 1

εl(κ, ω)

]
(17)

that is the real part of transverse conductivity (at q → 0) has a contribution proportional to
the imaginary part of the inverse longitudinal dielectric function at the zone boundary (or the
reciprocal lattice vectors). The loss function Im

[− 1
εl (κ,ω)

]
far from the centre of the Brillouin

zone (up to a third of the lattice vector) was measured by EELS [8] to be a wide band of
density excitations (mixed collective and el–hole excitations), and it can be approximated to
be of similar form up to the zone boundary. In the presence of strong Umklapp potential Uκ ,
this band should be associated by virtue of equation (17) with the mid-infrared band observed
for the transverse conductivity. The essence of equation (17) is that in the presence of the
lattice potential (or any potential breaking translational invariance) the longitudinal excitations
become partially transverse (and thus can be observed in the transverse response). In spite of
the limited validity of equation (17) (valid only to second order in Uκ ), the suggested origin of
the mid-infrared band in the transverse conductivity deserves further experimental analysis.
Inter alia, the fact that high-frequency modes (e.g., plasmons and interband transitions) are
affected by the appearance of SC is contrary to the simple RPA treatment [11]. Thus a band
theory (even with strong short-range Hubbard repulsion) is not a valid description essentially
at all dopings including the SC phase. This is not surprising, since the band theory fails utterly
in the Mott insulating state (at half-filled band). Moreover, since OR observes changes due
to the SC transition at high frequencies [12, 13] of collective modes and interband transitions
(0.2–4 eV), the complete understanding of high-Tc superconductivity cannot be limited to
effective low-energy phenomenological theories.

Dynamical mean field theory (DMFT) [14] successfully describes Mott transition and
related consequences of this transition (for instance, ‘mid-infrared band’ in the optical
conductivity). DMFT, not limited to low energies, can correctly explain the local physics
of Hubbard repulsion, while the description of superconductivity and the long-range part of
Coulomb interaction remains a difficult challenge. Sum rules (equations (11) and (12)) can
be used to check the self-consistency of DMFT calculations of optical conductivity.
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One of the important questions about high-temperature superconductivity is the origin
of the condensation energy (the energy difference between superconducting state and normal
state). Hamiltonian (equation (1)) is sufficiently close to the original truly first-principle
Hamiltonian so that the terms of Hamiltonian (equation (1)) can be clearly identified with
terms of the original Hamiltonian. Similar identification is quite problematic for many
phenomenological Hamiltonians suggested in the literature (making the origin of condensation
energy ambiguous for such models). The change of el–lat energy (static part of electron–ion
energy) can be analyzed from experimental optical data with the use of sum rule (equation (11))
in order to test whether Eel–lat contributes to the condensation energy. It should be noted that
although BCS Hamiltonian is a reduced (phenomenological) Hamiltonian, it correctly ascribes
condensation energy to the reduction of the dynamic part of electron–ion interaction energy
(rewritten as attractive el–el term in BCS Hamiltonian).
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